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Phase transitions in self-gravitating systems: Self-gravitating fermions and hard-sphere models
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~Received 18 September 2001; revised manuscript received 31 January 2002; published 20 May 2002!

We discuss the nature of phase transitions in self-gravitating systems both in the microcanonical and in the
canonical ensemble. We avoid the divergence of the gravitational potential at short distances by considering the
case of self-gravitating fermions and hard-sphere models. Depending on the values of the parameters, three
kinds of phase transitions~of zeroth, first, and second order! are evidenced. They separate a ‘‘gaseous’’ phase
with a smoothly varying distribution of matter from a ‘‘condensed’’ phase with a core-halo structure. We
propose a simple analytical model to describe these phase transitions. We determine the value of energy~in the
microcanonical ensemble! and temperature~in the canonical ensemble! at the transition point and we study
their dependance on the degeneracy parameter~for fermions! or on the size of the particles~for a hard-sphere
gas!. Scaling laws are obtained analytically in the asymptotic limit of a small short distance cutoff. Our
analytical model captures the essential physics of the problem and compares remarkably well with the full
numerical solutions. We also stress some analogies with the liquid-gas transition and with the Blume-Emery-
Griffiths model with infinite range interactions. In particular, our system presents two tricritical points at which
the transition passes from first order to second order.

DOI: 10.1103/PhysRevE.65.056123 PACS number~s!: 05.90.1m, 64.60.2i, 47.20.2k, 05.70.2a
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I. INTRODUCTION

The statistical mechanics of self-gravitating systems tu
out to be very different from that of other, more familia
many-body systems, e.g., neutral gases and plasmas, d
the unshielded, long-range nature of the gravitational fo
@1#. Due to this fundamental difference, the notion of eq
librium is not always well defined and these systems exh
a nontrivial behavior with the occurence of phase transiti
associated with gravitational collapse. If the particles
treated as classical point masses, it can be shown tha
global entropy maximum exists, even if the system is
stricted within a box so as to prevent evaporation@2,3#. A
self-gravitating system can increase entropy without bo
by developing a dense and hot ‘‘core’’ surrounded by a dil
‘‘halo.’’ There exist, however, local entropy maxima~meta-
stable equilibrium states! if the condition L52ER/GM2

<0.335 is satisfied, i.e., if the energyE is sufficiently large
~for a given box radiusR) or if the radius is sufficiently
small ~for a given energyE). Since these equilibrium state
are only local entropy maxima, the question natural
emerges whether they are long-lived or will collapse to
configuration with higher entropy. In any case, a phase tr
sition mustoccur forL.Lc50.335 since the entropy has n
extremum at all above this threshold@2#. In that case, the
system is expected to collapse indefinitely towards a stat
higher and higher central concentration and temperat
This is the celebrated ‘‘gravothermal catastrophe’’@3#.

However, if we introduce a repulsive potential at sh
distances, complete core collapse is prevented and it ca
proved that a global entropy maximum now exists for
accessible values of energy. This effective repulsion can
introduced in many different ways but the physical resu
are rather insensitive to the precise form of the regular
tion. For example, we can study the case of self-gravita
fermions for which an exclusion principle imposes an up
bound on the distribution function@4–7#. Alternatively, we
1063-651X/2002/65~5!/056123~21!/$20.00 65 0561
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can consider a classical hard-sphere gas by introducing
‘‘excluded volume’’ around each particle@8,9#. Other forms
of regularization are possible@10,11#. When such regulariza
tions are introduced, it is possible to evidence properly th
kinds of phase transitions of zeroth, first, and second or
They separate a ‘‘gaseous’’ phase, which is independan
the small-scale cutoff, from a ‘‘condensed’’ phase in whi
the particles are tightly bound. This is similar to the liqui
gas transition in an ordinary fluid. However, for long-ran
systems, such as self-gravitating systems, the statistica
sembles are not interchangeable and phase transitions
occur both in the canonical and in the microcanonical
semble. This results in the existence oftwo tricritical points,
one in each ensemble. In that respect the self-gravita
Fermi gas shares some analogies with the Blume-Em
Griffiths ~BEG! model with infinite range interactions@12#.

The object of this paper is to provide a detailed descr
tion of phase transitions in self-gravitating systems. In Se
II–V we consider the case of self-gravitating fermions. T
equilibrium phase diagram was calculated in an earlier pa
@6# and we complete this study by determining explicitly t
values of energy~in the microcanonical ensemble! and tem-
perature~in the canonical ensemble! at which the phase tran
sitions occur. We also propose a simple analytical mode
describe these phase transitions. The ‘‘gaseous’’ phas
modeled by a classical homogeneous sphere while the ‘‘c
densed’’ phase is made of a completely degenerate nuc
surrounded by a hot atmosphere with uniform density~re-
strained by the box!. The massM* of the nucleus is deter
mined by maximizing the entropy~free energy! vs M* for a
given total mass and energy~temperature! of the configura-
tion. Quite remarkably, this simple model can reproduce
main features of the numerical study. It also allows us
determine analytically how the energy or the temperature
the transition points depend on the degeneracy paramete
Sec. VI we extend our analytical model to the case o
classical gas with a short distance cutoff. This model h
©2002 The American Physical Society23-1
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PIERRE-HENRI CHAVANIS PHYSICAL REVIEW E65 056123
been studied numerically by Aronson and Hansen@8# and
Stahlet al. @9#, and our analytical model gives a good agre
ment with their numerical results. It is also consistent w
the toy models of Lynden-Bell and Lynden-Bell@13# and
Padmanabhan@1#. The possible astrophysical applications
our study are discussed in Sec. VI E.

II. STATISTICAL MECHANICS OF SELF-GRAVITATING
FERMIONS

A. The Fermi-Dirac distribution

We consider a system ofN fermions interacting via New-
tonian gravity. These particles can be electrons in wh
dwarf stars@14#, neutrons in neutron stars@15,4#, massive
neutrinos in dark matter models@16,5#, etc. We assume tha
the mass of the configuration is sufficiently small so as
ignore general relativistic effects. Letf (r ,v,t) denote the dis-
tribution function of the system, i.e.,f (r ,v,t)d3rd3v gives
the mass of particles whose positions and velocities ar
the cell (r ,v;r1d3r ,v1d3v) at timet. The integral off over
the velocity determines the spatial density

r5E f d3v, ~1!

and the total mass of the configuration is given by

M5E rd3r , ~2!

where the integral extends over the entire domain. On
other hand, in the mean-field approximation, the total ene
of the system can be expressed as

E5
1

2E f v2d3rd3v1
1

2E rFd3r5K1W, ~3!

whereK is the kinetic energy andW is the potential energy
The gravitational potentialF is related to the star density b
the Newton-Poisson equation

DF54pGr. ~4!

Finally, the Fermi-Dirac entropy is given by the formula

S52E H f

h0
ln

f

h0
1S 12

f

h0
D lnS 12

f

h0
D J d3rd3v, ~5!

which can be obtained by a standard combinatorial analy
In this expression,h0 is the maximum value accessible to th
distribution function. Ifg52s11 denotes the spin multiplic
ity of the quantum states,m the mass of the particles, andh
the Planck constant, one has by virtue of the Pauli exclus
principle h05gm4/h3. An entropy of the form~5! was also
introduced by Lynden-Bell@17# in the context of collision-
less self-gravitating systems~e.g., elliptical galaxies, dark
matter! undergoing a ‘‘violent relaxation’’ by phase mixin
@18–20#. In that context,h0 represents the maximum valu
of the initial distribution function and the actual distributio
function ~coarse-grained! must always satisfyf̄ <h0 by vir-
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tue of the Liouville theorem. This is the origin of the ‘‘effec
tive’’ exclusion principle in Lynden-Bell’s theory, which ha
nothing to do with quantum mechanics. In reality, the mixi
entropy introduced by Lynden-Bell is a complicated sum
Fermi-Dirac entropies for each phase level constituting
initial condition. For simplicity, we shall restrict ourselves
the single level approximation for which the mixing entrop
coincides with expression~5!.

At statistical equilibrium, the system is expected to ma
mize the Fermi-Dirac entropy at fixed mass and energy.
troducing Lagrange multipliers to satisfy these constrain
we find that thecritical points of entropy correspond to the
Fermi-Dirac distribution

f 5
h0

11leb((v2/2)1F)
, ~6!

wherel is a strictly positive constant, ensuring thatf <h0
andb is the inverse temperature. In the fully degenerate lim
f .h0, this distribution function has been extensively studi
in the context of white dwarf stars in which gravity is ba
anced by the pressure of a degenerate electron gas@14#. In
the nondegenerate limitf !h0, the Fermi-Dirac distribution
reduces to the Maxwell-Boltzmann distribution

f .
h0

l
e2b„(v2/2)1F…, ~7!

so that we expect to recover the properties of classical
thermal spheres at low densities@1#. In particular, the Fermi-
Dirac spheres, like the isothermal spheres, have an infi
mass and one is forced to confine the system within a bo
radiusR. Physically, this confinement is justified by the r
alization that the relaxation isincompleteso that the condi-
tions of applicability of statistical mechanics, regarding, f
example, the ergodic hypothesis, can be fulfilled only in
limited region of space. In addition, an astrophysical syst
is never completely isolated andR could represent the typica
radius at which the system interacts with its neighbors.

Kinetic equations have been proposed to describe the
laxation of self-gravitating systems towards the Fermi-Dir
distribution @18,21#. If we assume that the system is subje
to tidal forces and if we allow high energy particles to esca
the system when they reach an energye5v2/21F>em , an
extension of the Michie-King model taking into account t
degeneracy can be deduced from these equations@21#. For
e<em , one has

f 5h0

e2be2e2bem

l1e2be
, ~8!

while f 50 for e.em since the stars have been removed
the tidal field. Whenl→1`, we recover the Michie-King
model@22# and whenem→1`, we recover the Fermi-Dirac
distribution ~6!. The density associated with the truncat
distribution function~8! goes to zero at a finite radius, whic
is identified as the tidal radius. Therefore, the configurat
3-2
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PHASE TRANSITIONS IN SELF-GRAVITATING . . . PHYSICAL REVIEW E65 056123
has a finite mass. This distribution function could descr
elliptical galaxies and galactic halos limited in extension a
consequence of tidal interactions with other systems@17,16#.
This model is, of course, more realistic than the box mod
However, in order to exhibit phase transitions in se
gravitating systems, the box model provides a more con
nient theoretical framework and we shall use it in the seq

B. Thermodynamical parameters

The thermodynamical parameters for Fermi-Dirac sphe
in the mean-field approximation have been calculated
Chavanis and Sommeria@6# and we shall directly use thei
results. The equation determining the gravitational poten
at equilibrium is obtained by substituting the Fermi-Dir
distribution ~6! in the Poisson Eq.~4!, using Eq.~1!. Intro-
ducing the variablesc5b(F2F0), whereF0 is the central
potential,k5lebF0, andj5(16p2A2Gh0 /b1/2)1/2r , it can
be written

1

j2

d

dj S j2
dc

dj D5I 1/2~kec(j)!, ~9!

whereI 1/2 denotes the Fermi integral

I n~ t !5E
0

1` xn

11tex
dx ~10!

of ordern51/2. The boundary conditions at the origin are

c~0!5c8~0!50. ~11!

In the case of bounded spheres, one must stop the integr
of Eq. ~9! at j5a with

a5S 16p2A2Gh0

b1/2 D 1/2

R. ~12!

The parametera is related to the temperature and to t
energy by the equations

h[
bGM

R
5ack8~a!, ~13!

L[2
ER

GM2
5

a7

m4E0

a

I 3/2~keck(j)!j2dj2
2

3

a10

m4
I 3/2~keck(a)!.

~14!

Moreover,a andk are related to each other by the relatio

a5ck8~a!5m2, ~15!

wherem is the ‘‘degeneracy parameter,’’

m5h0A512p4G3MR3. ~16!

For a given value ofm and k, we can solve the ordinary
differential equation~9! until the valuej5a at which the
condition ~15! is satisfied. Then, Eqs.~13! and ~14! deter-
mine the temperature and the energy of the configuration
05612
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varying the parameterk ~for a fixed value of the degenerac
parameterm), we can cover the whole bifurcation diagram
parameter space@6#. The entropy of each configuration i
given by ~see the Appendix!

Sh0

M
52

7

3
Lh1ck~a!1h1 ln k2

2a6

9m2
I 3/2~keck(a)!,

~17!

and the free energy by

J5S2bE. ~18!

Note that Eq.~18! is the free energyF5E2TS up to a
negative proportionality factor. In the microcanonical e
semble, a solution is stable if it corresponds to a maxim
of entropyS at fixed mass and energy. In the canonical e
semble, the condition of stability requires that the solution
a maximum of free energyJ at fixed mass and temperature.
can be shown@4# that this mean-field approach isexactin a
thermodynamical limit such thatN→1` with m, h, L
fixed. This implies, in particular, thatN1/3R, TN24/3,
EN27/3, andSN21 approach a constant value forN→1`.
The usual thermodynamical limitN,R→1` with N/R3 con-
stant is, of course, not relevant for nonextensive systems

III. PHASE TRANSITIONS IN A SELF-GRAVITATING
FERMI GAS

A. The nondegenerate limit„µÄ`…

Before considering the case of an arbitrary degree of
generacy, it may be useful to discuss first the nondegene
limit corresponding to a classical isothermal gas (\→0). In
that case, the thermodynamical parameters are given by@3#

h5ac8~a!, ~19!

L5
3

2

1

ac8~a!
2

e2c(a)

c8~a!2
, ~20!

S

N
52

1

2
ln h22 lna1c~a!1h22Lh, ~21!

wherea5(4pGbr0)1/2R is the normalized box radius an
c is the normalized gravitational potential solution of th
Emden equation@14#

1

j2

d

dj S j2
dc

dj D5e2c ~22!

with boundary conditions

c~0!5c8~0!50. ~23!

The equilibrium phase diagram (E,T) is represented in
Fig. 1. The curve is parametrized bya, which can be con-
sidered as a measure of the central concentration. An equ
lent parametrization is provided by the density contrastR
5r(0)/r(R) ~see Fig. 2!. In the microcanonical ensembl
3-3
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PIERRE-HENRI CHAVANIS PHYSICAL REVIEW E65 056123
~MCE!, the solutions on the upper branch of Fig. 1~until
point MCE! are stable and correspond to local entro
maxima. The rest of the spiral corresponds to unstable sa
points. ForL.Lc50.335, there are no critical points o
entropy and the system collapses indefinitely. This is the
called ‘‘gravothermal catastrophe.’’ In the canonical e
semble~CE!, only the solutions prior to point CE are stabl
They correspond to local maxima of free energy. The res
the spiral corresponds to unstable saddle points. Forh.hc
52.52, there is no hydrostatic equilibrium and the syst
undergoes an ‘‘isothermal collapse.’’ These stability resu
can be deduced from the turning point analysis of Katz@23#
or by solving the eigenvalue equations associated with

FIG. 2. Density contrast of classical isothermal spheres a
function of energy. The series of equilibria becomes unstable in
canonical ensemble forR.32.1 and in the microcanonical en
semble forR.709. The value of energy at which the density co
trast tends to1` is L51/4 ~singular sphere!.

FIG. 1. Equilibrium phase diagram for classical isotherm
spheres. ForL.Lc or h.hc , there is no hydrostatic equilibrium
and the system undergoes a gravitational collapse.
05612
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second order variations of entropy or free energy@24,25#.
For L,Lc and h,hc , the stable solutions are onlymeta-
stable. There are no global maxima of entropy or free ene
for classical point masses in gravitational interaction@2#. We
also note that the region of negative specific heats~between
points CE and MCE! is stable in the microcanonical en
semble and unstable in the canonical ensemble, where
replaced by a phase transition~an ‘‘isothermal collapse’’!.
This is expected on physical grounds since it can be sho
quite generally that the specific heatmustbe positive in the
canonical ensemble@1#. These results clearly indicate tha
the statistical ensembles are not interchangeable in the
of self-gravitating systems~see, e.g., Ref.@26#!, contrary to
normal matter in which the energy is an extensive parame

In Fig. 3, we have plotted the energy and entropy as fu

a
e

FIG. 3. Entropy and energy as functions of the central conc
tration a. The peaks of energy and entropy occur for the sa
values ofa.

FIG. 4. Entropy vs energy for classical isothermal spher
When several solutions exist for the same energy, the states
low entropy are unstable saddle points. They can either evolve
wards the metastable state with highest entropy~see arrow! or col-
lapse to a state of ever-increasing entropy, as suggested in Ref.@26#.

l

3-4
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PHASE TRANSITIONS IN SELF-GRAVITATING . . . PHYSICAL REVIEW E65 056123
tions of the central concentrationa. We observe that the
peaks occur for the same values ofa, sincedS5bdE. This
is also clear from Fig. 4 where we have represented the
tropy as a function of energy. When several critical points
entropy exist for the same energy, only the one with
largest entropy is an entropymaximum. The other critical
points are unstable saddle points. Therefore, if the syste
initially prepared on a saddle point, we expect a transition
occur from a state of low entropy to a state of higher entro
This is not really a phase transition but just an instability
similar diagram has been found for isothermal spheres
scribed in the context of general relativity@27#. In this anal-
ogy, the mass energyM plays the role of the classical energ
E and the binding energyEbind5(M2M0)c2, where M0
5Nm is the rest mass andN the baryon number, plays th
role of the classical entropyS. In Figs. 5 and 6, we have
ploted the corresponding diagrams in the canonical
semble. Here again, the peaks of temperature correspon
the peaks of free energy, sincedS52Edb. The free energy
has an additional peak~for E50!, which has no counterpar
in the temperature diagram. However, this peak is not a
ciated with an instability and the interpretation of the curv
is the same as in the microcanonical ensemble.

B. Large values of the degeneracy parameter„µÄ105
…

We now consider the case of self-gravitating fermio
characterized by a degeneracy parameterm. We first discuss
the case of large values of the degeneracy parameter.
extension of the classical diagram of Fig. 1 is reported in F
7. We see that the inclusion of degeneracy has the effec
unwinding the spiral. The evolution of the density contra
along the series of equilibrium is depicted in Fig. 8. In t
rangeL* (m),L,Lc , there exist several critical points o
entropy for each single value of energy. The solutions on
upper branch of Fig. 7~pointsA! are nondegenerate and ha

FIG. 5. Free energy and inverse temperature as functions o
central concentrationa. The peaks occur for the same values ofa.
The free energy presents an additional extremum, but it is not
sociated with an instability.
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a smooth density profile; they form the ‘‘gaseous’’ phas
The solutions on the lower branch~pointsC) have a ‘‘core-
halo’’ structure with a massive degenerate nucleus and a
lute atmosphere; they form the ‘‘condensed’’ phase. Acco
ing to the criterion of Katz@23#, specifically discussed in
Ref. @6# for self-gravitating fermions, these solutions a
both entropy maxima~EM!, while the intermediate solution
~pointsB) are unstable saddle points~SP!. These points are
similar to pointsA, except that they contain a small embr
onic nucleus~with small mass and energy! which plays the
role of a ‘‘germ’’ in the langage of phase transition. Th
density profiles of these solutions are given in Ref.@6#.

he

s-

FIG. 6. Free energy vs inverse temperature for classical isot
mal spheres. The interpretation is the same as in Fig. 4.

FIG. 7. Equilibrium phase diagram for Fermi-Dirac spheres w
a degeneracy parameterm5105. Points A form the ‘‘gaseous’’
phase. They are global entropy maxima~GEM! for L,L t(m) and
local entropy maxima~LEM! for L.L t(m). Points C form the
‘‘condensed’’ phase. They are LEM forL,L t(m) and GEM for
L.L t(m). PointsB are unstable SP and contain a ‘‘germ.’’ Th
figure exhibits, in particular, a first order phase transition in
microcanonical ensemble.
3-5
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PIERRE-HENRI CHAVANIS PHYSICAL REVIEW E65 056123
To be more precise, we have plotted the entropy of th
solutions as a function of energy in Fig. 9. The entropy of
unstable phase~pointsB) is always smaller than the entrop
of the stable phases, as it should. There is now a cros
point in the diagram, atL5L t(m), which marks the onset o
a phase transition. At that point, the ‘‘gaseous’’ phase and
‘‘condensed’’ phase have the same entropy. AsL is increased
across the transition point, the nondegenerate solut
~points A) pass from global to local entropy maxima. In
versely, the degenerate solutions~pointsC) pass from local
to global entropy maxima. We expect, therefore, a ph
transition to occur from the ‘‘gaseous’’ phase to the ‘‘co
densed’’ phase whenL5L t

1(m). The ‘‘kink’’ in the curve
S(E) at the transition point where the two branches inters
corresponds to a discontinuity of temperature in the equi
rium phase diagram~see the vertical plateau in Fig. 7!. The
specific heat is also discontinuous at that point and tu
from positive to negative. According to Stahlet al. @9#, this
phase transition could be called a ‘‘gravitational first ord
phase transition.’’ It has to be noted, however, that contr
to the liquid-vapor transition, the two phases cannot coe
in the present situation.

For L t(m),L,Lc , the nondegenerate solutions a
metastable, but we may suspect@6# that they are long-lived
so that theyare physical. These solutions are insensitive
the small-scale regularization and depend only on the lo
range gravitational interaction. In the limitm→1`, the tran-
sition energyL t(m) goes to2` and we recover the classica
spiral of Fig. 1. This spiral is formed by the metastable sta
of the ‘‘gaseous’’ phase~pointsA). The ‘‘condensed’’ phase
~pointsC) is superposed to theL axis. These states have a
infinite central density and an infinite temperature. The
stable branch~pointsB) coincides with the spiral, but thes
states physically differ from the ‘‘gaseous’’ states~pointsA)
by the presence of an infinitesimal ‘‘germ’’ with negligibl

FIG. 8. Density contrast as a function of energy for se
gravitating fermions (m5105). This figure can be compared wit
Fig. 2 for classical isothermal spheres. PointsA ~gaseous phase!
have a low density contrast. PointsB and C contain a central
nucleus with high density@6#.
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mass and energy. Therefore, what we see actually in the l
m→1` are the metastable states. It is plausible that th
metastable states will be selected by the dynamics~on rel-
evant time scales! even if states with higher entropy exist. I
fact, depending on itstopology~i.e., the form of the profile!
an initial condition withL.L t(m) can either relax towards
the local entropy maximum~gaseous phase! or collapse to-
wards the global entropy maximum~condensed phase!. Al-
ternatively, forL,L t(m) an initially ‘‘condensed’’ configu-
ration can remain frozen in this metastable state or expl
into a ‘‘gaseous’’ state with more entropy. Therefore, t
choice of a stable equilibrium state does not only depend
whether the equilibrium solution is a local or a global e
tropy maximum, but also on whether or not the initial co
dition lies in its ‘‘basin of attraction’’. The characterizatio
of this basin of attraction requires a nonequilibrium analys
which is not attempted in the present paper. A first step
that direction was performed by Youngkins and Miller@11#
by using a one-dimensional spherical shell model and
Chavaniset al. @26# with the aid of a simple relaxation equa
tion derived from a maximum entropy production princip
@18#. These preliminary works reveal that the structure of t
basin of attraction is extremely complex so that the final st
of the system cannot be easily predicted from the initial c
dition when several entropy maxima exist. In addition, t
structure of this basin of attraction also depends on whe
the system is described by the microcanonical or by the
nonical ensemble@11,26#.

However, forL.Lc the metastable phase completely d
appears and, in that case, the systemmustnecessarily col-
lapse. This transition is associated with what has been tr
tionally called the ‘‘gravothermal catastrophe’’@3# in the case
of classical point masses. For systems described by
Fermi-Dirac statistics, the core ultimately ceases to shr
when it becomes degenerate. In that case, the system fal
to the global entropy maximum~point D), which is the true

FIG. 9. Entropy of each phase vs energy form5105. A phase
transition occurs atL t(m) at which the two stable branches~solu-
tions A and C) intersect. The unstable solutionsB always have
smaller entropy.
3-6
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PHASE TRANSITIONS IN SELF-GRAVITATING . . . PHYSICAL REVIEW E65 056123
equilibrium state for these systems. This global entro
maximum has a ‘‘core-halo’’ structure, with a degenera
core and a nondegenerate halo. This phase transition is s
times called a zeroth order phase transition@28# since it is
associated with a discontinuous jump of entropy~in the clas-
sical limit, the entropy of the condensed phase is infinite!. In
fact, this does not correspond to a true phase transition~in
the usual sense!, not even to an instability, but simply to th
sudden disapearance of the ‘‘gaseous’’ phase. It has to
noted that the degenerate nucleus resulting from this gr
tational collapse has a relatively important mass and a v
small radius~for m5105 and L.Lc , we have typically
M* /M.0.22 andR* /R.5 1023). This massive nucleus
~fermion ball! can have important astrophysical implicatio
and, in the context of dark matter, may mimic the effect o
black hole at the center of a galaxy~see Sec. VI E!.

C. Small values of the degeneracy parameter„µÄ103
…

When the degeneracy parameter is sufficiently sm
there exists only one critical point of entropy for each va
of energy~see Fig. 10! and it is a global entropy maximum
Therefore, a sufficiently strong degeneracy suppresses
phase transitions in the microcanonical ensemble, includ
the ‘‘gravothermal catastrophe’’~see Fig. 11!. For high ener-
gies ~small values ofL) the solutions almost coincide wit
the classical isothermal spheres. When the energy is low
~large values ofL) the solutions take a ‘‘core-halo’’ structur
with a partially degenerate nucleus surrounded by a di
Maxwellian atmosphere. It is now possible to overcome

FIG. 10. Equilibrium phase diagram for Fermi-Dirac sphe
with a degeneracy parameterm5103. PointsA form the ‘‘gaseous’’
phase. They are global maxima of free energy~GFEM! for h,h t

and local maxima of free energy~LFEM! for h.h t . The reverse is
true for pointsC in the ‘‘condensed’’ phase. PointsB are unstable
SP. This figure exhibits, in particular, a first order phase transitio
the canonical ensemble. The equality of the free energy of the
phases (JA5JC) at the transition temperatureh t implies the equal-
ity of the areas delimited by the curve and the plateau, i.e.,*A

C(h
2h t)dL50. This is similar to Maxwell’s construction in the theor
of the van der Waals gas.
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critical energyLc50.335 and the critical density contra
R5709 found by Antonov@2# for classical particles. In tha
region, the specific heat is negative, which is allowed in
microcanonical ensemble. As energy decreases further, m
and more mass is concentrated in the nucleus~which be-
comes more and more degenerate! until a minimum acces-
sible energy, corresponding toLmax(m), at which the
nucleus contains all the mass. In that case, the atmosp
has been ‘‘swallowed’’ and the system has the same struc
as a cold white dwarf star@14#. This is a relatively singular
limit, since the density drops to zero at a finite radiu
whereas for partially degenerate systems, the density de
like r 22 at large distances. We can study the formation
this compact object by defining an order parameterk
5R95/R, whereR95 is the radius of the sphere that contai
95% of the mass@10#. This parameter is ploted as a functio
of energy in Fig. 12 and the diagram is similar to the o
obtained by Follana and Laliena@10# with a different regu-
larization of the potential at the origin. For high energies,
density varies smoothly with the distance andk;1. For low
energies, the system spontaneously forms a dense core
taining more and more mass so thatk→kc!1 @with kc
.6.678/m2/3, estimated from the mass-radius relation~33! of
a completely degenerate nucleus#. We observe that the orde
parameter varies rapidly in the region of negative spec
heats but remains continuous. According to Cerruti-S
et al. @29#, this is the mark of a second order phase transit
at L5L0 ~corresponding to the point of minimum temper
ture hc). At that point, the specific heat is infinite and turn
from positive to negative; more precisely,C5dE/dT di-

s

n
o

FIG. 11. Equilibrium phase diagram for self-gravitating ferm
ons with different values of the degeneracy parameterm. The zeroth
and first order phase transitions are suppressed in the microca
cal ensemble form&2600 and in the canonical ensemble form
&82.5. For large values ofm, the curve makes several rotation
before unwinding. The criterion of Katz tells us that one mode
stability is lost each time the curve rotates clockwise and regai
as the curve rotates counterclockwise. Therefore, only the upper
lower branches are entropy maxima. Form→1` ~classical limit!,
the curve winds up indefinitely and tends to the spiral of Fig. 1
discussed in the text.
3-7
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verges like (L2L0)21 and6(hc2h)21/2 @25#. In fact, this
‘‘second order phase transition’’ is not really a phase tran
tion; it just corresponds to the ‘‘clustering’’ of the sel
gravitating gas as its energy is progressively reduced.

If we now consider the canonical situation, we see t
several solutions exist at the same temperature. A first o
phase transition occurs ath t(m) and separates a ‘‘gaseous
phase from a ‘‘condensed’’ phase. The interpretation is
same as in the microcanonical ensemble. The energy is
continuous at the transition so that a large amount of la
heat is released. The specific heat is also discontinuous
remains positive. Forh.h t(m) the ‘‘gaseous’’ states are
metastablebut they probably are physical. This metastab
branch completely disapears ath5hc and the system under
goes an ‘‘isothermal collapse.’’ This phase transition is m
radical than the previous one since it is marked by the d
pearance of the metastable phase. For self-gravitating fe
ons the ‘‘isothermal collapse’’ ends up on a compact obj
that contains almost all of the mass~for m5103, M* .M ,
and R* .6.731022R at h;hc). Since the collapse is
marked by a discontinuity of the free energy~see Fig. 13!,
this could be called a zeroth order phase transition@28#. It
has been shown in Ref.@25# that the point of minimum tem-
peraturehc coincides with the Jeans instability criterio
More precisely, the condition of instability of an isotherm
gas sphere can be writtenR.(hc/3)1/2LJ;LJ , whereLJ is
the Jeans length. Sinceh t,hc , a first order phase transitio
can occur at scales much smaller than the Jeans scal„R
5(h t/3)1/2LJ!LJ…. This might explain the formation o
smaller objects than usually achieved with the ordinary Je
instability. This idea has been developed by Stahlet al. @9# in
relation with planet formation. However, the metasta
states forh.ht may be long-lived and it is not clear wheth
a phase transition will actually occur ath t .

FIG. 12. Evolution of the order parameter with energy form
5103. This figure illustrates the ‘‘clustering’’ of the self-gravitatin
gas as energy is lowered. The presence of the ‘‘bump’’ atL;Lc

was previously noted by Follana and Laliena@10# in their model.
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IV. TRICRITICAL POINTS

We have indicated in the preceding section that the ph
transition in the microcanonical ensemble disapears at a c
cal degeneracy parametermMTP.2600 and that the phas
transition in the canonical ensemble disapears form,mCTP
.82.5. These points at which theL-h curve presents an
inflexion are calledtricritical points ~TP! in the language of
phase transitions.

In Fig. 14, we have enlarged the phase diagram near
tricritical point in the canonical ensemble. It is located
LCTP.0.5 andhCTP.3.06. In the canonical ensemble, th
oscillations of theL-h curve form.mCTP are replaced by a
horizontal Maxwell plateau connecting the gaseous ph
~left! to the condensed phase~right!. This characterizes a
canonical first order phase transition ath t(m). This diagram
exhibits a close analogy with the classical gas-liquid tran
tion, the liquid phase being the counterpart of the~gravita-
tional! Fermi condensate. At the canonical tricritical poi
CTP the two phases merge, the plateau disappears, an
specific heat diverges likeC;(L2Lc)

22;uh2hcu22/3.
Therefore, the first order phase transition becomes sec
order at the canonical tricritical point.

The gravitational Fermi gas diagram is nevertheless m
complex than the liquid-gas diagram because it presentsan-
other tricritical point in the microcanonical ensemble~MTP!.
In Fig. 15, we have enlarged the phase diagram near
tricritical point. It is located atLMTP.0.38, hMTP.1.68.
The interpretation is the same as in the canonical ensem
except that the plateau is now vertical as it corresponds
discontinuity of temperature at a transition energyL t(m)
~microcanonical first order phase transition!. We have de-
noted byhgas andhcond the values of the inverse temper
ture of the two phases at the transition energy. At the tricr
cal pointhgas5hcond. We have also indicated in the figur
the point of minimum temperaturehc at which the specific
heat diverges~second order microcanonical phase transitio!.

In Fig. 16, we have plotted the values of the transiti

FIG. 13. Free energy of each phase vs inverse temperature
m5103. The interpretation is the same as in Fig. 9.
3-8
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PHASE TRANSITIONS IN SELF-GRAVITATING . . . PHYSICAL REVIEW E65 056123
temperatureh t in the canonical ensemble and the values
the characteristic temperatureshgas andhcond in the micro-
canonical ensemble as a function of the degeneracy pa
eterm. These curves characterize first order phase transit
in the canonical and microcanonical ensembles. We h

FIG. 14. Enlargement of the phase diagram near the tricrit
point in the canonical ensemble. The Maxwell construction de
mining the transition temperatureh t(m) is done explicitly~dashed
areas!. For mCTP582.5 the Maxwell plateau disapears and theL-h
curve presents an inflexion point atLCTP.0.5, hCTP.3.06. At
that point, the specific heat becomes infinite and the transitio
second order. This diagram is remarkably similar to the liquid-
transition for an ordinary fluid.

FIG. 15. Enlargement of the phase diagram near the tricrit
point in the microcanonical ensemble. The Maxwell construct
determining the transition energyL t(m) is done explicitly~dashed
areas!. For mMTP52600 the Maxwell plateau disappears and t
L-h curve presents an inflexion point atLMTP.0.38, hMTP

.1.68. We have indicated different characteristic temperatures
described in the text.
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also represented the minimum temperaturehc marking the
onset of a microcanonical second order phase transition
the CTP, this branch connects theh t branch. This is consis-
tent with the appearance of anisolatedsecond order phas
transition in the canonical ensemble at CTP. This diagr
shares some similitudes with the one obtained by Barre´ et al.
@12# in their analysis of the BEG model with infinite rang
interactions. This system also displays an inequivalence
ensembles, regions of negative specific heats, and two
ritical points ~one in each ensemble!. This analogy suggest
that these properties are related to the long-range natur
the interactions more than to the details of the model. T
implies a kind of universality for this type of systems. How
ever, there are also noticable differences between the
models. In particular, in the BEG model, second order ph
transitions are characterized by a discontinuity of the spec
heat ~angular point! while in our model of self-gravitating
fermions the specific heat is always continuous except at
critical pointhc at which it diverges~this is our definition of
a second order phase transition!. Therefore, there still exists
a second order phase transition above the canonical tricri
point in the BEG model but not in the self-gravitating Ferm
gas. Another consequence of the continuity of the spec
heats in our model is that the second order critical linehc
2m ~dotted line! does not connect the first order critical line
~dashed lines! at the microcanonical tricritical point MTP bu
slightly after, unlike in the BEG model@12#.

V. A SIMPLE ANALYTICAL MODEL
FOR SELF-GRAVITATING FERMIONS

The previous study has revealed that self-gravitating
mions can undergo a phase transition from a ‘‘gaseo

l
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s

l
n
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FIG. 16. Phase diagram of the self-gravitating Fermi gas in
m-h plane. The solid line gives the transition temperature at
canonical first order phase transition. The dashed lines give
temperatures of the two phases~gas and condensate! at the micro-
canonical first order phase transition. The dotted line gives the c
cal temperaturehc at the microcanonical second order phase tr
sition. CTP and MTP are the tricritical points in the two ensembl
3-9
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PIERRE-HENRI CHAVANIS PHYSICAL REVIEW E65 056123
phase to a ‘‘condensed’’ phase. We shall now propos
simple analytical model to describe this phase transit
more conveniently. As we shall see, our model can reprod
remarkably well the essential features of the equilibriu
phase diagram and it can be used to determine the de
dance of the critical parameters on the degeneracy param
m.

A. The ‘‘gaseous’’ phase

The ‘‘gaseous’’ phase can be represented by a homo
neous distribution of particles with a Maxwellian distributio
of velocities

f 5
r

~2pT!3/2
e2v2/2T. ~24!

The relation between the energy and the temperature is g
by

E5
3

2
MT2

3GM2

5R
, ~25!

and the entropy by

h0S

M
5

3

2
ln~2pT!2 lnS 3M

4pR3D 1 ln h01
3

2
. ~26!

Introducing the normalized energyL and the normalized
temperatureh defined in Sec. II B, we can rewrite the prev
ous equations in the form

L5
3

5
2

3

2h
, ~27!

h0S

M
52

3

2
ln h1 ln m1

3

2
1

1

2
ln p2 ln 6. ~28!

These equations correctly describe the gaseous phas
high energies and high temperatures~i.e., low density con-
trasts!. Of course, it cannot reproduce the spiral behavior
the classical phase diagram, which is an intrinsic property
the Emden equation. An analytical expression for this sp
has been given in Ref.@25# in the asymptotic limit of high
density contrasts.

B. The ‘‘condensed’’ phase

For the ‘‘condensed’’ phase, we shall improve the co
halo model proposed by Chavanis and Sommeria@6#. We
assume that the ‘‘core’’ is completely degenerate and we
note byM* , R* , andE* its mass, radius, and energy, r
spectively. In that limit, the distribution function is a ste
function: f 5h0 for v<vmax and f 50 for v.vmax. Of
course, for a self-gravitating system, the maximum veloc
vmax is a function of the position. For this simple distributio
function, the pressure and the density are given by
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p5
1

3E f v2d3v5
4ph0

3

vmax
5

5
, ~29!

r5E f d3v54ph0

vmax
3

3
. ~30!

Eliminating the velocity between these two relations, we fi
that the equation of state of a completely degenerate sys
is that of a polytrope with indexg55/3 ~or n53/2),

p5Kr5/3, K5
1

5 S 3

4ph0
D 2/3

. ~31!

These results are, of course, well known from the theory
white dwarf stars@14# and they are repeated only in order
determine the constantK in the present context. Now, from
the theory of polytropic spheres@14#, the mass-radius rela
tion is given in the general case by

K5NnGM(n21)/nR(32n)/n, ~32!

whereNn is a constant depending on the index of the po
trope. Forn53/2, one hasN3/250.42422 . . . .Therefore, the
relation between the mass and the radius of our degene
nucleus is

M* R
*
3 5

x

h0
2G3

, with x.5.972331023. ~33!

On the other hand, its energy is given by@14#

E* 52
3

7

GM
*
2

R*
, ~34!

and its entropy is equal to zero since the distribution funct
is unmixed (f 5h0).

By shrinking, the nucleus releases an enormous amoun
energy that heats the envelope. The envelope behaves t
fore like an ordinary gas maintained by the walls of the b
so that its density is approximately uniform. Its energy a
entropy are therefore given by

Ehalo5
3

2
~M2M* !T2

3GM* ~M2M* !

2R

2
3G~M2M* !2

5R
, ~35!

h0S5~M2M* !@ 3
2 ln~2pT!2 ln~M2M* !

1 ln V1 ln h01 3
2 #. ~36!

Contrary to our previous paper@6#, we have not neglected
the potential energy of the envelope as compared to its t
mal energy. This sensibly improves the agreement with
full numerical solution. However, we have still assumed th
the core is much smaller than the halo, so thatV5 4

3 pR3

represents the total volume of the system. For calculating
potential energy, we have used the formula
3-10
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W524pGE rM ~r !rdr , ~37!

whereM (r ) is the mass contained within the sphere of
dius r. This formula is valid for an arbitrary spherically sym
metrical distribution of matter@22#.

Adding Eqs.~34! and ~35! and expressing the radius o
the core as a function of its mass, using Eq.~33!, the total
energy of the system is given by

E52
3

7

h0
2/3G2

x1/3
M

*
7/31

3

2
~M2M* !T

2
3GM* ~M2M* !

2R
2

3G~M2M* !2

5R
. ~38!

For a given value of energy~microcanonical ensemble!, this
relation determines the temperatureT as a function of the
core mass. Therefore, the entropy~36! is a function ofM*
alone. The mass of the nucleus at equilibrium is determi
by maximizing the entropy with respect toM* . After sim-
plification, the conditiondS/dM* 50 is found to be equiva-
lent to

ln~M2M* !1
3G

2RT
~M22M* !2

6G

5RT
~M2M* !2

3

2
ln T

1
G2h0

2/3

x1/3

M
*
4/3

T
5 ln h01 ln V211

3

2
ln~2p!. ~39!

We obtain the same relation by maximizing the free energJ
at fixed mass and temperature. Equations~38! and~39! com-
pletely determine the equilibrium phase diagram of se
gravitating fermions in the framework of our analytic
model. For convenience, we shall reexpress these equa
in a dimensionless form. To that purpose, we introduce
fraction of massa contained in the core such thatM*

FIG. 17. Equilibrium phase diagram obtained from our analy
cal model (m5105). It compares relatively well with the full nu-
merical solution reported in Fig. 7.
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5aM. In terms of a, the radius of the core isR* /R
56.678a21/3m22/3 @see Eq.~33!#. On the other hand, we se

l5
1

~512p4x!1/3
50.149756 . . . ,

C5
1

2
ln p2 ln 621522.21939 . . . .

~40!

Introducing furthermore the dimensionless energyL and the
dimensionless temperatureh defined in Sec. II B, the equa
tions of the problem become

L5
3

7
lm2/3a7/32

3

2
~12a!

1

h
1

3

2
a~12a!1

3

5
~12a!2,

~41!

ln~12a!1 3
2 ln h1lm2/3a4/3h1 9

5 h~ 1
6 2a!5 ln m1C,

~42!

h0S

M
5~12a!F2

3

2
ln h2 ln~12a!1 ln m1C1

5

2G ,
~43!

h0J

M
5

h0S

M
1hL. ~44!

The equilibrium phase diagram is represented in Fig.
for a degeneracy parameterm5105. It provides a fairly good
agreement with the full numerical solution of Sec. II B~see
Fig. 7!. Of course, we cannot expect to reproduce exactly

- FIG. 18. Entropy as a function of the mass of the nucleus
m5105 and L520.1.L t . This curve is obtained by using th
analytical formulas~41!–~43!. For L.L t , the ‘‘condensed’’ state
~point C! is a global entropy maximum and the ‘‘gaseous’’ sta
~point A) a local entropy maximum. The solution with the ‘‘germ
~point B) is an entropy minimum. The fraction of mass contained
the nucleus is relatively large form5105 ~see Fig. 19! but it de-
creases as the classical limit is approached. Asm→1`, acond

→0, agerm→0 with acond@agerm.
3-11
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numerical results in view of the approximations made in o
analytical model. In particular, except for very low energie
the core is only partially degenerate and this is respons
for the quantitative discrepencies observed between the
diagrams. However, the qualitative behavior is the same
this is essentially what was attempted by our analytical
proach. In particular, we recover the three types of soluti
previously studied. The solutions on the upper branch~points
A) form the ‘‘gaseous’’ phase. They can also be conside
as a particular limit of the core-halo model witha50. The
solutions on the lower branch~points C) form the ‘‘con-
densed’’ phase and the solutions on the intermediate bra
~points B) are similar to the ‘‘gaseous’’ states~points A)
except that they possess a small central nucleus~a ‘‘germ’’ !.
To determine the stability of these solutions we have plo
in Fig. 18 their entropy as a function of the core massa for
a given energy. The curveS(a) has the usual ‘‘W shape’’
characteristic of phase transitions. The ‘‘gaseous’’ statea
50) can be considered as an entropy maximum althoug
does not correspond to the conditiondS/da50. The other
entropy maximum corresponds to the ‘‘condensed’’ st
~point C) and the entropy minimum to the solution with th
germ ~point B). For L.L t , the ‘‘condensed’’ statesC are
global entropy maxima and the ‘‘gaseous’’ statesA are local
entropy maxima~the reverse is true forL,L t!. However, to
pass fromA to C, we have to cross an entropic barrier co
stituted by the solutionB. This requires that the entropyde-
creases, which is not possible for an isolated system. The
fore, depending on whether the initial fraction of massa0 is
smaller or larger thanagerm, the system will either relax
towards the ‘‘gaseous’’ state or collapse towards the ‘‘co
densed’’ state. Of course, this argument assumes thata is the
only degree of freedom in the system, which is clearly
idealization. As mentioned previously, the real ‘‘basin of
traction’’ is much more complicated.

The equilibrium phase diagram corresponding to a deg
eracy parameterm5103 is represented in Fig. 20 and it com
pares relatively well with the full numerical solution~see

FIG. 19. Evolution of the fraction of mass contained in th
nucleus as a function of energy for a degeneracy parame
m5105.
05612
r
,
le
o
d
-
s

d

ch

d

it

e

-

-

-

n
-

n-

Fig. 10!. The minimum energy, corresponding toLmax(m),
is reached when all the mass is in the degenerate core at
temperature (a→1, h→1`). Equation~41! then yields

Lmax~m!5
3

7
lm2/3. ~45!

For L→Lmax(m) and for sufficiently largem, one has

12a;e2lm2/3h, Lmax2L;lm2/3e2lm2/3h. ~46!

This shows that the atmosphere is swallowed exponenti
rapidly when we approach the minimum energy. Figure
displays a clear phase transition in the canonical ensem
The value of the temperature of transition is very close to
exact value found in the numerical approach. In the pres
case, we can safely consider that the core of the conden
is completely degenerate so that the quantitative agreem
with the exact solution is better than in the microcanoni
ensemble. Once again, the stability of the equilibrium sta
can be determined by considering the variation of the f
energy with the core mass~see Fig. 21!. For h,h t (h
.ht), the ‘‘gaseous’’ state is a global~local! maximum of
free energy and the ‘‘condensed’’ state a local~global! one.
The description of the phase transition is the same as in
microcanonical ensemble.

C. Scaling laws in the limit µ\¿`

We shall now determine the behavior of the critical p
rameters asm→1` ~classical limit!. In the microcanonical
ensemble, the phase transition occurs close to the maxim
energyE* of the condensed phase, corresponding toL* (m).
Using Eqs.~41! and ~42!, we find that the condition of en
ergy maximumdL50 is equivalent to

r FIG. 20. Equilibrium phase diagram obtained from our analy
cal model (m5103). It compares relatively well with the full nu-
merical solution reported in Fig. 10.
3-12
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F3

2
1lm2/3a4/3h1

9

5
hS 1

6
2a D G2

5
3

2
~12a!S 4

3
lm2/3a1/3h2

1

12a
2

9

5
h D .

~47!

This equation, together with Eqs.~41! and ~42!, determines
the functionL* (m). Now, in the limitm→1`, the fraction
of mass contained in the nucleus goes to zero while the t
perature increases. Taking the limitm→1`, a→0, andh
→0 in Eq. ~47!, we obtain the relation

lm2/3a7/3h52. ~48!

Considering the limiting form of Eqs.~41! and ~42! in the
same approximation, we find

L5
3

7
lm2/3a7/32

3

2h
, ~49!

3
2 ln h1lm2/3a4/3h5 ln m. ~50!

Therefore, the thermodynamical parameters at the poin
maximum energy behave with the degeneracy parameter

a* ;
1

ln m
, h* ;

~ ln m!7/3

m2/3
, L* ;2

m2/3

~ ln m!7/3
.

~51!

The transition pointL t(m) is determined by equating th
entropy of the two phases. This yields

FIG. 21. Free energy as a function of the mass of the nucleus
m5103 and h50.74,h t . For h,h t , the ‘‘gaseous’’ state is a
global maximum of free energy and the ‘‘condensed’’ state is a lo
maximum of free energy. The solution with the ‘‘germ’’ is a min
mum of free energy. The fraction of mass contained in the cond
sate is close to one~see Fig. 22!. In the limit m→`, acond→1, and
agerm→0.
05612
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~12a!@2 3
2 ln hcond2 ln~12a!1 ln m1C1 5

2 #

52 3
2 ln hgas1 ln m1C1 5

2 , ~52!

wherehcond is the temperature of the condensed phase,hgas
the temperature of the gaseous phase, anda the mass con-
tained in the condensate at the transition point. Conside
the limiting form of Eqs.~27!, ~41!, and ~42!, when m→
1`, a→0, andh→0, we find that

L52
3

2hgas
5

3

7
lm2/3a7/32

3

2hcond
, ~53!

3
2 ln hcond1lm2/3a4/3hcond5 ln m. ~54!

Solving for hcond andhgas, we get

hcond;
2 lnm

lm2/3a4/3
,

1

hgas
;

lm2/3a4/3

2 lnm S 12
4

7
a ln m D .

~55!

Substituting these results in Eq.~52!, we find that the mass
contained in the condensate behaves like

a;
1

ln m
. ~56!

Combining the foregoing relations, we find that the energy
transition is given by

L t;2
m2/3

~ ln m!7/3
. ~57!

In the classical limit,L t→2`, so that the ‘‘gaseous’’ state
are always metastable as previously discussed. The temp
tures of the two phases at the transition point behave lik

or

l

n-

FIG. 22. Evolution of the fraction of mass contained in t
nucleus as a function of the inverse temperature for a degene
parameterm5103.
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hgas;hcond;
~ ln m!7/3

m2/3
. ~58!

The jump of temperature is given by

1

hcond
2

1

hgas
;

m2/3

~ ln m!7/3
. ~59!

Finally, we can study the behavior of the fraction of ma
contained in the germ and in the condensate asm→1` for
a given value of energyL. For the condensate~points C!,
a→0 andh→0 so that Eqs.~41! and ~42! simplify in

3

2h
5

3

7
lm2/3a7/3, ~60!

3

2
ln h1lm2/3a4/3h5 ln m. ~61!

The first equality simply means that the potential energy
the core tends to2` so that the temperature of the halo mu
rise to1` so as to maintain the total energy fixed. Comb
ing Eqs.~60! and ~61! using Eq.~43!, we obtain

acond;
1

ln m
, hcond;

~ ln m!7/3

m2/3
, Scond; ln m. ~62!

Since the entropy diverges asm→1`, we recover the well-
known fact that there is no global entropy maximum for
classical self-gravitating gas. Note that the divergence of
tropy is relatively slow~logarithmic!. For the germ~points
B), we have in the classical limit

agerm→0, hgerm→hgas, Sgerm→Sgas. ~63!

These results simply reflect the fact that the unstable bra
approaches the gaseous branch asm→1` but still differs
from it by a presence of a small germ. The size of the ge
is determined by Eq.~42!. For m→1`, it leads to

lm2/3a4/3hgas5 ln m ~64!

so that

agerm;
~ ln m!3/4

m1/2
. ~65!

For a given energy, the mass contained in the condensate
in the germ goes to zero as we approach the classical li
However, the relation

agerm

acond
;

~ ln m!7/4

m1/2
!1 ~66!

indicates that the size of the germ is much smaller than
size of the condensate.

These results are consistent with the proof given in R
@26# for the absence of global entropy maximum in the m
crocanonical ensemble. We can make the entropy diverg
05612
s

f
t
-

n-

ch

nd
it.

e

f.
-
by

approaching an arbitrarily small fraction of particles in t
core (M* !M ) so that the potential energy goes to2`.
Since the total energy is conserved, the temperature mus
to 1` and this leads to a logarithmic divergence of t
entropy. This ‘‘natural’’ evolution~in a thermodynamical
sense! is confirmed by dynamical models of self-gravitatin
systems~see the discussion in Ref.@26#!. It is found that the
gravitational collapse of classical point masses leads t
finite time singularity~the central density becomes infinite
a finite time tcoll) with a slow algebraic divergence of th
temperature and a logarithmic divergence of the entropy
t→tcoll . In addition, the mass contained in the core tends
zero ast→tcoll ~the density profile att5tcoll is close to a
power lawr.r 2a, with a.2.2,3) in agreement with our
previous observations.

We now consider the canonical situation. In the limitm
→1`, the phase transition occurs close to maximum te
perature of the condensed phase, corresponding toh* (m).
Using Eq. ~42!, we find that the condition of temperatur
maximumdh50 is equivalent to

4

3
lm2/3a1/3h2

1

12a
2

9

5
h50. ~67!

This equation, together with Eq.~42!, determines the func-
tion h* (m). In the limit m→1`, the fraction of mass con
tained in the condensate comes close to unity and the m
mum temperature increases. Taking the limita→1 and h
→0 in Eq. ~67!, we get

4

3
lm2/3h5

1

12a
. ~68!

Simplifying Eqs.~41! and ~42! in the same approximation
we obtain

L5
3

7
lm2/32

3

2
~12a!

1

h
, ~69!

ln~12a!1 3
2 ln h1lm2/3h5 ln m. ~70!

We find, therefore, that the parameters at the point of ma
mum temperature behave like

12a* ;
1

ln m
, h* ;

ln m

m2/3
, L* 2Lmax~m!;2

m2/3

~ ln m!2
.

(71)

The transition pointh t(m) in the canonical ensemble i
obtained by equating the free energy of the two phases.
ing the results of Secs. V A and Sec. V B we obtain t
general relation

2 3
2 ln h1 ln m1C111 3

5 h

5~12a!@2 3
2 ln h2 ln~12a!1 ln m1C1 5

2 #

1 3
7 lhm2/3a7/32 3

2 ~12a!1 3
2 ha~12a!1 3

5 h~12a!2,

~72!
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wherea is the mass contained in the condensate at the t
sition point. In the limit m→1` and a→1, this relation
reduces to

2 3
2 ln h1 ln m5 3

7 hlm2/3. ~73!

The free energy of the gaseous phase~left-hand side! is
dominated by the contribution of the entropy and the f
energy of the condensed phase~right-hand side! is dominated
by the energy of the core. We find, therefore, that the te
perature of the transition behaves like

h t;
ln m

m2/3
. ~74!

The mass contained in the condensate is determined by
~42!. In the limit m→1`, it simplifies to

ln~12a!1 3
2 ln h1lm2/3h5 ln m. ~75!

Solving for a in Eqs.~73! and ~75!, we get

12a;
1

m8/3
. ~76!

According to Eqs.~27!, ~41!, and ~74!, the energy of the
gaseous phase and the energy of the condensed phase b
at the transition point like

Lgas;2
m2/3

ln m
, Lcond2Lmax~m!;2

1

m2 ln m
. ~77!

The jump in the energy~latent heat! is

Lcond2Lgas;m2/3S 11
3

4 lnm D . ~78!

Finally, let us determine the fraction of mass contained
the condensate and in the germ asm→1` for a given value
of temperature. For the condensate~points C), a→1 so
that Eq.~42! leads to

12acond;e2lhm2/3
. ~79!

The free energy of the condensed state behaves like

J;Lmax~m!h;m2/3. ~80!

The divergence of the free energy in the canonical ensem
is more rapid than the divergence of the entropy in the
crocanonical ensemble. This is simply because the free
ergy is dominated by the divergence of the~potential! energy
while the entropy is dominated by the divergence of the lo
rithm of the temperature. For the germ~pointsB), we have
in the classical limit

agerm→0, L→Lgas, J→Jgas. ~81!

Using Eq.~42!, we find that
05612
n-

e

-

q.

have

n

le
i-
n-

-

agerm;
~ ln m!3/4

m1/2
. ~82!

In the limit m→1`, the germ contains almost no ma
while the condensate contains almost all the mass.

These results again agree with the proof given in Ref.@25#
for the absence of a global maximum of free energy in
canonical ensemble. We can make the free energy diverg
collapsing the massM to a point ~the divergence ofJ is
simply due to the divergence of the potential energy;
entropy has a weak, logarithmic, negative divergence!. This
argument would suggest that the natural evolution of a s
tem of classical point masses in the canonical ensemble
develop a density profile in the form of ad function with all
the mass atr 50. This isnot what numerical simulations o
gravitational collapse show~see the discussion in Ref.@26#!.
It is usually found that when the system is held at a fix
temperature, the self-similar collapse leads to a density p
file close to the power lawr;r 22 at t5tcoll . This profile
has a vanishing mass atr 50 and its free energy is not di
vergent. Therefore, a finite time singularity prevents the s
tem from reaching arbitrarily large values of the free ener
It is not known whether other solutions of these dynami
equations~not necessarily self-similar! can lead to the ex-
pectedd function with J51`.

VI. CLASSICAL GAS WITH A SHORT DISTANCE CUT-
OFF

The case of a self-gravitating gas with a short distan
cut-off was first considered by Aronson and Hansen@8# and
more recently by Stahlet al. @9# ~see the discussion in Sec
VII D !. The equilibrium phase diagram of this system
similar to the one obtained for self-gravitating fermions~see
Figs. 7–10!. Indeed, the degeneracy parameterm plays the
same role as the inverse of the short distance cut-offa. The
interpretation of the phase transitions is therefore similar
the dependance of the critical parameters on the cutof
different. We shall therefore reformulate our analytical mod
to the case of a classical hard-sphere gas and determine
the previous results are modified in this new situation.

A. The ‘‘gaseous’’ phase

We model the gaseous phase by a uniform distribution
matter occupying the whole container. The energy and
entropy are, therefore, given by

E5
3

2
NT2

3GM2

5R
, ~83!

S/N5
3

2
1

3

2
lnS 2pT

m D2 lnS 3N

4pR3D . ~84!

In dimensionless variables, these equations can be rewr
as

L5
3

5
2

3

2h
, ~85!
3-15
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S/N52
3

2
ln h. ~86!

In the expression~86! for the entropy, we have not writte
the constant term

3

2
1

3

2
ln~2p!1 lnF4pR3

3N S GM

R D 3/2G , ~87!

which plays no role in the problem.

B. The ‘‘condensed’’ phase

We model the ‘‘condensed’’ phase by a nucleus and
atmosphere, each of uniform density. The velocity distrib
tion of the particles is assumed to be Maxwellian with te
peratureT. Let R* be the radius of the nucleus andN* the
number of particles that it contains. We introduce an
cluded volume; 4

3 pa3 around each particle, wherea can be
regarded as the ‘‘effective’’ size of the particles.R* andN*
are, therefore, related to each other by a relation of the f

R
*
3 54gN* a3, ~88!

where g is a geometrical factor with order of magnitud
unity that depends on the nature of the close packing~see
Ref. @8#!. The energy of the core is

E* 5
3

2
N* T2

3GM
*
2

5R*
, ~89!

and its entropy

S* 5N* F3

2
1

3

2
lnS 2pT

m D2 lnS 3N*
4pR

*
3 D G . ~90!

For the halo, we have

Ehalo5
3

2
~N2N* !T2

3GM* ~M2M* !

2R
2

3G~M2M* !2

5R
,

~91!

Shalo5~N2N* !H 3

2
1

3

2
lnS 2pT

m D2 lnF3~N2N* !

4pR3 G J .

~92!

As in the case of fermions, we have considered that the
ume of the nucleus is much smaller than the volume of
halo. Adding these expressions and using Eq.~88! to express
the radius of the core as a function of its massM* 5N* m,
we obtain for the whole configuration

E5
3

2
NT2

3Gm1/3M
*
5/3

5a
2

3GM* ~M2M* !

2R

2
3G~M2M* !2

5R
, ~93!
05612
n
-
-

-

m

l-
e

S5NF3

2
1

3

2
lnS 2pT

m D2 lnS 3N

4pR3D G2N* lnS R3

Na3D
2~N2N* !lnS N2N*

N D . ~94!

Let a5M* /M denote the fraction of mass contained in t
nucleus. We also introduce the filling factor

m5
R

a~4gN!1/3
, ~95!

which can be regarded as an inverse normalized hard-sp
radius. The case of point masses corresponds to the limm
→1`. Clearly, m plays the same role as the degenera
parameter in Sec. II B. In dimensionless form, the equati
of the problem become

L52
3

2h
1 3

5 ma5/31 3
2 a~12a!1 3

5 ~12a!2, ~96!

S/N52 3
2 ln h23a ln m2~12a!ln~12a!, ~97!

where we have again eliminated the constant~87! from the
expression of the entropy. We now determine the mass of
nucleus by maximizing the entropy~97! at fixed energy. This
yields the relation

11 ln~12a!23 lnm52
3h

10
1

9

5
ah2mha2/3. ~98!

Equations~96!–~98! determine the equilibrium phase dia
gram of a classical hard-sphere gas in the framework of
analytical model. The description of this diagram~and its
dependance on the parameterm) is similar to the one given
in Sec. V for self-gravitating fermions. The minimum ener
corresponds to the configuration for which all the mass is
the nucleus at zero temperature. Taking the limita→1 and
h→1` in Eq. ~96!, we get

Lmax~m!5 3
5 m. ~99!

For L→Lmax and for sufficiently large values ofm, Eqs.
~96! and ~98! yield

12a;e2mh, Lmax2L;
3

2h
. ~100!

Note that the relation between the temperature and the
ergy is different from the corresponding one for se
gravitating fermions@see Eq.~46!#.

C. Scaling laws in the limit µ\¿`

The derivation of the scaling laws for the critical param
eters of a classical hard-sphere gas is essentially the sam
for self-gravitating fermions~Sec. V C!. We shall directly
give the results without detailed discussion.
3-16
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In the microcanonical ensemble, the point of maximu
energy, corresponding toL* (m), is determined by the rela
tion

2

3
h2S 3

10
2

9

5
a1ma2/3D 2

5
2

3
mha21/32

9

5
h2

1

12a
.

~101!

In the limit m→1`, the thermodyanical parameters beha
at the point of maximum energy like

a* ;
1

ln m
, h* ;

~ ln m!5/3

m
, L* ;2

m

~ ln m!5/3
.

~102!

At the transition pointL t(m), the equality of the entropy
of the two phases leads to the relation

2 3
2 ln hcond23a ln m2~12a!ln~12a!52 3

2 ln hgas.
(103)

In the limit m→1`, the fraction of mass contained in th
condensate behaves like

a;
1

ln m
. ~104!

The energy of the transition and the temperature of e
phase are given by

L t;2
m

~ ln m!5/3
, hgas;hcond;

~ ln m!5/3

m
. ~105!

The jump in the temperature at the transition point is

1

hcond
2

1

hgas
;

m

~ ln m!5/3
. ~106!

For a given energy, the thermodynamical parameters
the condensate behave, in the limitm→1`, like

acond;
1

ln m
, hcond;

~ ln m!5/3

m
, Scond; ln m.

~107!

For the germ, we have

agerm;S ln m

m D 3/2

, hgerm→hgas, Sgerm→Sgas.

~108!

In the canonical ensemble, the maximum temperature
the condensed phase, corresponding toh* (m), is determined
by the relation

2

3
mha21/32

1

12a
2

9

5
h50. ~109!

In the limit m→1`, the thermodyanical parameters beha
at the point of maximum temperature like
05612
e

h

of

of

e

12a* ;
1

ln m
, h* ;

ln m

m
, L* 2Lmax~m!;2

m

ln m
.

(110)

At the transition pointh t(m), the equality of the free en
ergy of the two phases yields

3
5 h523a ln m2~12a!ln~12a!1 3

5 mha5/31 3
2 ha~12a!

1 3
5 h~12a!2. ~111!

In the limit m→1`, the temperature of the transition be
haves like

h t;
ln m

m
, ~112!

and the fraction of mass contained in the nucleus beha
like

12a;
1

m2
. ~113!

The energy of the two phases at the transition point is gi
by

Lgas;2
m

ln m
, Lcond2Lmax~m!;2

m

ln m
, ~114!

and the jump of the energy is

Lcond2Lgas;m. ~115!

For a given temperature, the thermodynamical parame
characterizing the condensate behave, in the limitm→1`,
like

12acond;e2mh, L;Lmax~m!;m, J;hLmax~m!

;m.
(116)

For the germ, we have

agerm;S ln m

m D 3/2

, L→Lgas, J→Jgas. ~117!

D. Comparision with previous works

Phase transitions in self-gravitating systems were first
vestigated with the aid of toy models that could be solv
exactly without recourse to a mean-field approximation. F
example, Lynden-Bell and Lynden-Bell@13# considered a
system ofN particles confined to the surface of a sphere
variable radius. They calculated exactly the density of sta
in the microcanonical ensemble and showed the existenc
a region with negative specific heats. Then, they evalua
the partition function in the canonical ensemble and dem
strated that the region of negative specific heats is repla
by a remarkable giant phase transition connecting a ‘‘g
eous’’ phase~at high energies! to a ‘‘condensed’’ phase~at
3-17
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low energies!. Padmanabhan@1# obtained similar results with
a simpler model consisting of only two particles in gravit
tional interaction confined within a spherical box. The pha
diagram determined by these authors is similar to the
reported in Fig. 10. These models exhibit a phase transi
in the canonical ensemble but not in the microcanonical
semble~unlike in Fig. 7!. This is because, for these simp
models, the density of states remains finite when the sm
scale cutoffa is set equal to zero, whereas for more realis
self-gravitating systems, it diverges. By contrast, the pa
tion function is divergent fora50 and this leads to the oc
currence of a phase transition in the canonical ensem
when a is sufficiently small. Padmanabhan investigated
dependance of the critical parameters on the small-scale
off a. In particular, he found that the temperature of the tr
sition is given by

Tt5
Gm2

3a ln~R/a!
. ~118!

This expression qualitatively agrees with our result~112!,
which becomes in dimensional variables

Tt;
GN2/3m2

a ln~R/aN1/3!
. ~119!

Recall thatN52 in Padmanabhan’s model. He also co
puted the change of the energy at the transition point
found that

Egas2Econd5
Gm2

a S 12
1

3 ln~R/a! D . ~120!

This expression also qualitatively agrees with our res
~115!, leading to

Egas2Econd;
GN5/3m2

a
. ~121!

The logarithmic correction in Eq.~120! is a particularity of
Padmanabhan’s model arising from the low value ofN. Fi-
nally, Padmanabhan investigated the dependance of theT(E)
curve with the small-scale cutoffa ~see his Fig. 3.2!. For
largea, his diagram is similar to that of Fig. 11. In particula
there exists a critical short distance cutoff above which
phase transition disappears~tricritical point!. It should be
stressed that the statistical approach based on the evalu
of g(E) or Z(b) does not determine the metastable sta
unlike the thermodynamical approach based on the max
zation of S@r# or J@r#. Only the true equilibrium states
which correspond to global maxima ofS or J, appear in the
T(E) diagram~in other words, the ‘‘plateaux’’ are directly
obtained without being required to make a Maxwell co
struction!. These equilibrium states are expected to
reached fort→1` but they are not necessarily the mo
relevant for astrophysical applications: as discussed pr
ously, the metastable equilibrium states may be long-liv
and may correspond to the structures that are actually
served in the universe. Indeed, the statistical mechanica
05612
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proach tells nothing about the time scales involved in
establishement of the equilibrium. A kinetic theory is need
to settle that point.

Phase transitions in self-gravitating systems have a
been investigated in the mean-field approximation for l
idealized models. Aronson and Hansen@8# have considered
the case of a classical hard-sphere gas modeled by a va
Waals equation of state. They considered a relatively la
cutoff and evidenced only the phase transition in the cano
cal ensemble~they obtained a diagram similar to that of Fi
10!. They also proposed a simple analytical model to d
scribe this phase transition. In their model, the ‘‘gaseou
phase consists ofN particles spread with uniform densit
throughout the whole container and the ‘‘condensed’’ ph
hasall N particles collapsed into a central core of unifor
density. The model that we proposed in Sec. VI is mo
general because we allow the condensate to contain an
trary fraction of the total mass. Then, the fraction of ma
that is actually achieved at equilibrium isdeterminedby
maximizing the free energy vsa. In the canonical ensembl
~the only situation discussed by Aronson and Hansen!, the
fraction of mass contained in the condensate is close to 1
that our precedure provides additional support to their ans
However, our model allows us to describe also the unsta

FIG. 23. Equilibrium phase diagram for a hard-sphere g
obtained in the framework of our analytical model. The parame
have been chosen so as to correspond to Fig. 2 of Aron
and Hansen @8#: R560 km, R530 km, R515 km; N
51057; m5neutron mass51.67310224 g; a50.4310213 cm.
These parameters correspond to a neutron-star-like structure. In
analytical model, we have adopted a value of the geometrical fa
g52 @8#. The agreement with the numerical study of Aronson a
Hansen is fairly good. For small radiusR515 km, there is no
phase transition. For larger radii (R530 km, R560 km), a
phase transition connects the ‘‘gaseous’’ phase~upper branch! to the
‘‘condensed’’ phase~lower branch!. This phase transition forms a
Maxwell plateau~dashed line! at a temperature depending on th
sizeR of the system@according to Eqs.~111! and~98!#. Dot-dashed
lines represent the free energyF5E2TS as a function of the in-
verse temperature for the caseR560 km. The crossing point de
termines the temperature of the transition.
3-18
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solution with the ‘‘germ’’ (a!1) and to obtain a better rep
resentation of the whole bifurcation diagram~see Fig. 23!. In
addition, our model can also describe the phase transition
the microcanonical ensemble~occuring for sufficiently small
values of the cutoffa), which was not considered by Aron
son and Hansen.

The study of Aronson and Hansen was reconsidered
Stahlet al. @9# who pointed out that the van der Waals equ
tion of state does not adequately describe hard-sphere
tems at high densities. They considered a more general e
tion of state and studied in detail the case of small filli
factors for which a phase transition occurs in the micro
nonical ensemble. They also determined numerically the
pendance of the transition temperature~in the canonical en-
semble! as a function of the filling factor and considere
applications of their results in the context of planet form
tion.

Following the works of Aronson and Hansen@8# and Stahl
et al. @9#, different authors have attempted to describe ph
transitions in self-gravitating systems by introducing a sm
scale regularization of the gravitational potential. For e
ample, in the study of Follana and Laliena@10#, the softening
is achieved by truncating toN terms an expansion of th
Newtonian potential in spherical Bessel functions. These
thors obtained an equilibrium phase diagram similar to
one in Fig. 10. However, they could not achieve very la
values ofN in their study so that they were not able to s
the development of the spiral~and the corresponding phas
transition in the microcanonical ensemble! asN→1`. An-
other analysis of phase transitions in self-gravitating syste
was provided by Youngkins and Miller@11# with a one-
dimensional model of concentric spherical mass shells. T
studied this system in the microcanonical, canonical,
grand canonical ensembles, both numerically and ana
cally, in the mean-field approximation. They found an over
good agreement between their numerical simulations and
mean-field predictions. They observed phase transition
the microcanonical and canonical ensembles but not in
grand canonical ensemble in which the system remains
mogeneous. This last result may be, however, an artifac
their one-dimensional model. It is plausible that, in the gra
canonical ensemble, the self-gravitating gas fragments
series of clumps~at different scales!, as observed in cosmol
ogy and for the interstellar medium. Some theoretical ar
ments in favor of this scenario have been given by Sem
et al. @30# and Chavanis@25#. Of course, to study the deve
opment of these clumps, it is necessary to extend the t
modynamical analysis to the full three-dimensional probl
and relax the assumption of spherical symmetry.

The thermodynamics of self-gravitating fermions was
vestigated by Lynden-Bell and Wood and Hertel and Thirr
in the early 1970s~see the discussion of Aronson and Hans
@8#!, but these papers were apparently not published. In R
@4,7#, it is proved that a rigorous thermodynamic limit exis
for self-gravitating fermions but the corresponding pha
diagram is not explicitly given. This equilibrium phase di
gram was calculated by Bilic and Viollier@5# for a particular
value of the degeneracy parameter adapted to a cosmolo
settling. It was also calculated independantly by Chava
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and Sommeria@6# for an arbitrary degree of degeneracy
the context of the theory of ‘‘violent relaxation.’’ In Ref.@6#,
the development of the spiral for high values of the deg
eracy parameter and the associated phase transition tha
curs in the microcanonical ensemble~in addition to the more
well-known phase transition in the canonical ensemble! was
clearly shown. However, the point of the transition was n
explicitly determined and this has been done in the pres
study.

E. Astrophysical applications

The application of the hard-sphere model in astrophys
could concern the fragmentation of the interstellar medi
and the formation of stars or even smaller objects, such
planets@9#. These objects would correspond to the ‘‘conde
sate’’ that results from the collapse of a cloud of gas or du
On the other hand, the model of self-gravitating fermio
could have applications for massive neutrinos in dark ma
models@16,5#, white dwarfs@14#, and neutron stars@15,4#.
By cooling below a critical temperature, a condensed ph
emerges consisting of a completely degenerate nucleus
rounded by a dilute envelope, as extensively studied in e
models of stellar structure@14#. This model could also be
relevant for the ‘‘violent relaxation’’ of collisionless stella
systems,1 such as elliptical galaxies@17,6,20#. In that case,
the exclusion principle is a consequence of the Liouv
theorem. Since degeneracy can stabilize the system wit
changing its overall structure at large distances, we have
gested in Ref.@6# that degeneracy could play a role in gala
tic nuclei. The recent simulations of Leeuwin and Athana
soula @32# and the theoretical model of Stiavelli@33# are
consistent with this idea especially if the nucleus of elliptic
galaxies contains a primordial massive black hole. Inde
the effect of degeneracy~in the sense of Lynden-Bell! on the
distribution of stars surrounding the black hole can expl
the cusps observed at the center of galaxies. Whether or
elliptical galaxies are degenerate remains however a ma
of debate because when the core becomes dense, two-
encounters will come into play and break the Liouville the
rem ~Shu’s criticism @34#!. This form of degeneracy may
however, be relevant for massive neutrinos in dark ma
models where it competes with quantum degeneracy@19#. In
fact, the thermal equilibrium distribution of massive neut
nos in dark matter models might be justified more by t
process of ‘‘violent relaxation’’ than by a collisional relax
ation. Indeed, the time scale of gravitational two-body e
counters for neutrinos is extremely long so that the critici
raised by Shu does not apply@35,19#. Therefore, the com-
monly adopted Fermi-Dirac distribution of self-gravitatin
neutrinos might be due to Lynden-Bell’s type of degenera
rather than due to quantum mechanics. Anyway, whate
the source of the exclusion principle~Lynden-Bell or Pauli!,

1In fact, the problem is complicated because violent relaxat
eventually fades before the maximum entropy state is attain
Thus, Eq.~6! @or Eq. ~7!# is unlikely to be reached throughout th
whole cluster. However, it is reasonable to hold in the central reg
in which violent relaxation occurs most violently@17,31#.
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the self-gravitating Fermi-Dirac model predicts the form
tion of a dense degenerate nucleus~fermion ball! with a
small radius and a large mass@5,6#. As suggested in Refs
@5,36#, this dense degenerate nucleus could be an alterna
to black holes at the center of galaxies. On the other han
large distances, the density of the self-gravitating Fermi
decays liker 22, which is a condition that dark galactic halo
must fulfill in order to reproduce the flat rotation curves
spiral galaxies@22#. Therefore, this model of self-gravitatin
fermions has a chance to account for the structure of d
matter in galactic halos.

VII. CONCLUSION

In this paper, we have described the inequivalence of
tistical ensembles and the nature of phase transitions in
gravitating systems by considering the case of s
gravitating fermions or the case of a classical hard-sph
gas. The introduction of an effective repulsion at short d
tances avoids the singularity of the ‘‘naked’’ gravitation
potential. It is likely that similar results will be obtained wit
different forms of regularization. For large values of the c
off a, there are no phase transitions. For intermediate va
of a, phase transitions occur in the canonical ensemble
not in the microcanonical ensemble. The correspond
phase diagram is of the type of Fig. 10 and has been fo
by various authors@8,5,6,10#. For smaller values ofa, phase
transitions occur both in the canonical and in the micro
nonical ensemble. The corresponding phase diagram is o
type in Fig. 7 and was first obtained in Ref.@6#. As the
small-scale cutoff is decreased, theT(E) curve winds up and
tends to the classical spiral fora→0 ~see Fig. 1!.

Depending on the value of the cutoffa and of the en-
semble considered~microcanonical or canonical!, three kinds
of phase transitions can be evidenced, which separate a ‘‘
eous’’ phase from a ‘‘condensed’’ phase. In the microcano
cal ensemble and for sufficiently smalla ~Fig. 7!, a gravita-
tional first order phase transition occurs at an energyEt(a) at
which the ‘‘gaseous’’ states pass from global to local entro
maxima and the ‘‘condensed’’ states from local to glob
entropy maxima. This transition is marked by a discontinu
of the temperature and of the specific heats. In the limia
→0, the transition energy is rejected to1`, so that the
stable ~gaseous! solutions of the classical spiral are on
metastable. These states may be physical, depending
whether the initial condition lies in their ‘‘basin of attrac
tion’’ or not @6,11,26#. However, the metastable branch d
appears at a critical energyEc , discovered by Antonov@2#,
at which the ‘‘gravothermal catastrophe’’@3# occurs. This
collapse can be considered as a zeroth order phase tran
since it is associated with a discontinuity of entropy. F
larger values ofa, there is only one entropy maximum fo
each value of energy~Fig. 10! and the previously describe
phase transitions are suppressed. However, as we pro
sively decrease the energy, the self-gravitating gas achi
higher and higher density contrasts and builds up a com
core containing more and more mass. This gravitatio
‘‘clustering’’ can be called a second order phase transit
since the specific heats diverges at the critical pointhc and
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the order parameter experiences a rapid variation in the
gion of negative specific heats~but remains continuous!.
Similar phase transitions occur in the canonical ensembl
is interesting that these phase transitions can be unders
with the aid of a simple analytical model that allows one
determine the dependance of the thermodynamical par
eters with the cut-off value. The present study can be
tended to include rotation@38#. It is also important to de-
velop nonequilibrium models to determine the structure
the ‘‘basin of attraction’’ of the equilibrium states when se
eral entropy maxima exist. A first step in that direction w
made by Youngkins and Miller@11# and by Chavaniset al.
@26# with the aid of simplified dynamical models. Thes
models could be used, in particular, to investigate num
cally the occurrence of the phase transitions and the rob
ness of the metastable states. If the system is placed
metastable state~local entropy maximum!, it will eventually
jump to the global entropy maximum, but this can take
infinite ~physically irrelevant! time. Indeed, the probability
that a fluctuation will allow the phase transition to develop
expected to be extremely low~except near the critical poin
Lc) @37#. Therefore, if the system is trapped in a metasta
state~but still slowly evolving along the series of equilibrium
by losing mass or energy, such as for globular clusters!, the
phase transition will occur at the critical pointLc rather than
at L t . However, if the system is initially far from equilib
rium, there is no simple criterion to decidea priori whether
it will converge towards the local or the global entropy ma
mum. Only direct numerical simulations can answer t
question and sketch the structure of the basin of attraction
self-gravitating systems.
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APPENDIX: ENTROPY OF THE SELF-GRAVITATING
FERMI GAS

In this Appendix, we give the main steps for deriving th
expression~17! for the entropy. Substituting the Fermi-Dira
distribution

f 5
h0

11kecebv2/2
, ~A1!

in the entropy~5! we obtain after some rearrangements

h0S5M ln k1E rcd3r1Kb

1h0E lnS 11
1

k
e2ce2bv2/2Dd3rd3v. ~A2!
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The last integral can be integrated by parts yielding the va
2bK/3. Therefore,

h0S5M ln k1E rcd3r1
5

3
Kb. ~A3!

Using the definition ofc, we get

h0S5M ln k12bW2MbF01 5
3 Kb. ~A4!

Now, the central density is determined by the relati
c(a)5b„F(R)2F0… with F(R)52GM/R. Hence
oc

ce

.

r

n.

05612
e Sh0

M
5 ln k1

2b

M
W1

bGM

R
1c~a!1

5bK

3M
. ~A5!

Using Eq.~3.12! of Chavanis and Sommeria@6# to express
the potential energyW and the kinetic energyK5E2W in
terms ofE, we find

Sh0

M
5 ln k1h1c~a!2

7

3
Lh2

2

9
h

a10

m4
I 3/2~kec(a)!.

~A6!

Finally, usingh5m2/a4, resulting from Eqs.~13! and ~15!,
we obtain Eq.~17!.
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